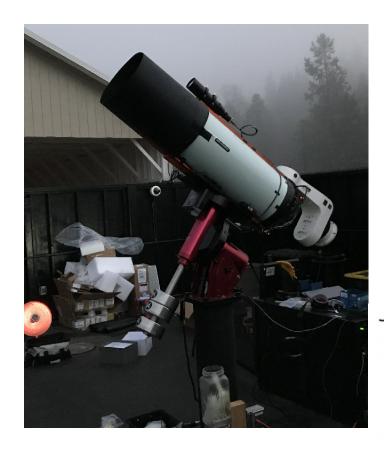
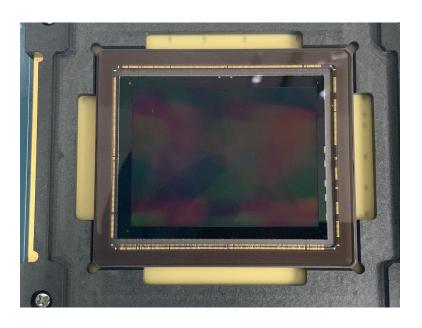


New Sensors Change the Cost Scaling of Survey Telescopes

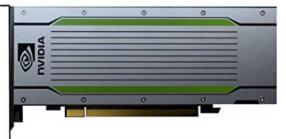
- Survey telescopes have as a figure of merit $A*\Omega$, area*solid angle product
 - Panstars, ZTF, Catalina Sky Survey,
 - LSST 6.5m equiv aperture 9.2 sqdeg FOV 3.2Gpix focal plane
- Small consumer telescopes
 - 11 inch RASA (28cm Dia, f/2.2, 4deg dia FOV)
 - 14 inch RASA (36cm Dia, f/2.2 4deg dia FOV)


	60 Mpix	150 Mpix
28cm D	7.4 sqdeg	XXX
36cm D	4.5 sqdeg	11.2 sqdeg

- Recently available consumer focal planes, backside CMOS 3.76um pixels, 1.5e RN
 - 61 Mpix IMX 455 ~87% QE 24*36mm (9520*6340 pixels) 9 Hz
 - 150 Mpix IMX 411 ~87% QE (14208*10656 pix) (40*53mm)


Different ways to use small telescopes

- With low cost small telescopes, the cost is very low but its survey capability doesn't compare larger 1.5m, 2m, or 6~7m counterparts. But the whole idea behind small telescopes is you can afford to buy many perhaps 100's of units.
 - With 240 28cm telescopes $A*\Omega$ that is 35% of LSST
- Large sky coverage
 - With 240 28cm telescopes cover ~1700 sqdeg at one time. 6 pointings would cover ~10,000sqdeg (π steradians) the sky above 30deg elevation.
- High sensitivity
 - All 240 telescopes have the same 7.4 sqdeg FOV. The outputs of the cameras are added together before further processing. Equal to a 4.2m telescope (in sensitivity) with a 7.4sqdeg FOV.
- Even at N=240 the cost is low compared to a ~2m class telescope. But a large data rate.
 In a search for interstellar asteroids, we'd want to take images every ~5 seconds. 14
 Gpixels *0.2Hz => 165 Tbyte/(8hr)


Basic Components Available

36cm f/2.2 Schmidt 150 Mpix cmos 11.2 sqdeg FOV 21.5 mag limit @ 500 sec integ (100 5 sec exposures)

Sony Imx 411 150Mpix CMOS Backside Illuminiated 1.5e RN

High speed computing at low Cost T4 GPU, 14 TFLOP (32FP) At < 3K.

If we have 1 GPU/telescope (240 telescopes) => Total computing peak 3.3 petaflops.

Applications (not all compatible with each other)

- Interstellar asteroids
 - Combine synthetic tracking (multiple velocity shift/add) and short exposures (~5 sec exposures) to enable > 10X discovery rate from LSST.
- High frame rates (10 Hz)
 - Occultations of stars by solar system bodies.
 - In galactic plane ~5000 stars with SNR>10 in 0.1 sec per telescope. (7.4 sqdeg, 28cm telescope)
- Optical counter part to transient events (GRB, Grav Waves, FRBs)
 - 1700 sqdeg at a time. 6 pointings cover ~10,000 sqdeg the sky > 30deg elevation (cover 10,000sqdeg to 20.5 mag every 1000 sec)
 - Significant probability the object was observed before the transient alert.
- NEOs search for large > ~100m NEOs, and detection of smaller NEOs that might impact the earth in a few weeks.
- Exoplanets, transits and microlensing (monitor ~ billion background stars for stellar microlensing events, follow with faster cadence for planetary microlensing events)

Interstellar Asteroids (ISO)

- Two possible goals.
 - significantly increase the discovery rate.
 - Find enough so that one of them has an orbit that enables a flyby mission.
- ISO on average move much faster than NEOs
 - Typically 50km/s (5X faster than NEOs)
 - The streaks are ~5X longer, resulting in ~5X lower SNR.
 - Synthetic tracking uses multiple short exposures (> 5X shorter than NEO searches) and performs a shift/add operation.
- If the ISO were 5X closer it's streak would be 25X longer (25X lower SNR) but 5X closer => 25 time brighter.
 - Synthetic tracking enables detection of these fast moving objects ~5X closer, ~125X the search volume.

An array of ~200 small telescopes would have the ~35% of the A*W of LSST, that multiplied by 125 implies a discovery rate approximately ~40X larger.

Photometric Variability (1700 sqdeg at a time)

- We look at two appliations. 1 High speed 10hz photometry, solar system body occultations, 2 monitoring larger number of stars for exoplanets. Microlensing
- A single small telescope 28cm, 7.4 sqdeg FOV, looking in the galactic plane, would see ~5000 stars < 13.4 mag to give SNR~10 in 0.1 sec. In searches for km sized KBO/TNOs via occultations, ~3 telescopes look at the same FOV and look for occultations that occur in all 3 telescopes. With a 240 array or telescopes, we could be looking at ~400,000 stars at one time.
- In exoplanet microlensing, (From J. Yee, A. Gould) one looks for a stellar microlensing event, then increase cadence to potentially detect an exoplanetary microlensing event. The time scale for the stellar microlensing event is slow (days) In 1 hr, the snr~10 limiting mag of a 28cm telescope is ~ 22 mag.
 - In one night, cover 10,000 sqdeg to 22 mag. Monitor ~400 million stars.

Summary

- The introduction of consumer low cost fast (f/2.2) Schmidt telescope and a new generation of large backside CMOS sensors (60Mpix to 150 Mpix) changes the cost/scaling equation for large survey telescopes.
 - A*W/\$ potentially > 10X better.
- In addition the CMOS sensors are able to operate at low noise (1.5e) at much higher frame rate than existing mosiac CCD focal planes. (~10Hz) Extends transient astronomy to shorter time scales.
 - Occultations, syn tracking Interstellar objects.
- While this talk has concentrated on large arrays of small telescopes on the ground, similar advantages apply to space based survey instruments.